Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-44824
J Oleo Sci 2016 Aug 01;658:671-80. doi: 10.5650/jos.ess16051.
Show Gene links Show Anatomy links

Effects of Asterias amurensis-derived Sphingoid Bases on the de novo Ceramide Synthesis in Cultured Normal Human Epidermal Keratinocytes.

Mikami D , Sakai S , Sasaki S , Igarashi Y .


???displayArticle.abstract???
Asterias amurensis starfish provide several bioactive species in addition to being fishery waste. Glucosyl ceramides (GlcCers) were extracted from the viscera of these starfish and were isolated by silica gel column chromatography. Degraded GlcCers generated A. amurensis sphingoid bases (ASBs) that mainly consisted of the triene-type bases d18:3 and 9-methyl-d18:3. The effect of these bases on ceramide synthesis and content were analyzed using normal human epidermal keratinocytes (NHEKs). The bases significantly enhanced the de novo ceramide synthesis and gene expression in NHEKs for proteins, such as serine-palmitoyltransferase and ceramide synthase. Total ceramide, GlcCer, and sphingomyelin contents increased dramatically upon ASB treatment. In particular, GlcCer bearing very-long-chain fatty acids (≥C28) exhibited a significant content increase. These ASB-induced enhancements on de novo ceramide synthesis were only observed in undifferentiated NHEKs. This stimulation of the de novo sphingolipid synthesis may improve skin barrier functions.

???displayArticle.pubmedLink??? 27430385
???displayArticle.link??? J Oleo Sci