Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-49034
Comp Biochem Physiol B Biochem Mol Biol 2022 Jan 01;257:110668. doi: 10.1016/j.cbpb.2021.110668.
Show Gene links Show Anatomy links

Testis-specific expression pattern of dmrt1 and its putative regulatory region in the sea urchin (Mesocentrotus nudus).

Cui Z , Zhang J , Sun Z , Liu B , Han Y , Zhao C , Chang Y .


???displayArticle.abstract???
Sea urchin (Mseocentrotus nudus) is an economically important mariculture species in several Asian countries. The growth rate and immunocompetence differ by sex in this species. However, the mechanisms of sex determination in M. nudus have remain unclear. In the present study, we focus on the dmrt1 gene of M. nudus (Mndmrt1) to investigate its dynamic expression pattern during different developmental stages. Real-time quantitative PCR (RT-qPCR) revealed that Mndmrt1 exhibits testis-specific expression and undetectable during the whole embryogenesis. With the development of ontogenetic, Mndmrt1 transcripts are first detected at 9 months post-fertilization (mpf). In addition, both the transcripts and protein of Mndmrt1 gene were specifically expressed in spermatogonia and spermatocytes, indicating that it might be a male germ cells marker in sea urchin. Significantly, the 1441 bp promoter sequence of Mndmrt1 gene was obtained by DNA walking, and one positive regulatory region at -1197/ -968 in the promoter, as well as one negative regulatory region at -1441/ -1198 have been identified by promoter activity analysis. Moreover, two regulatory regions contain multiple putative binding sites for transcription factors, including Sp1, Egr1, Sox5, CEBP, GATA and SRY. These findings suggest that Mndmrt1 may be related to testis differentiation and spermatogenesis in sea urchin and will provide an insight into understanding the regulatory mechanism of the dmrt1 gene.

???displayArticle.pubmedLink??? 34384887
???displayArticle.link??? Comp Biochem Physiol B Biochem Mol Biol