Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52872
ChemSusChem 2024 Jun 18;:e202400142. doi: 10.1002/cssc.202400142.
Show Gene links Show Anatomy links

Sea Urchin-Like NiCo-LDH Hollow Spheres Anchored on 3D Graphene Aerogel for High-Performance Supercapacitors.

Tong H , Li L , Wu C , Tao Z , Fang J , Guan C , Zhang X .


???displayArticle.abstract???
To enhance the inherent poor conductivity and low cycling stability of dimetallic layered double hydroxides (LDHs) materials, designing a synergistic effect between EDLC capacitors and pseudocapacitors is an efficient strategy. In this paper, we utilized a solvothermal technique employing Co-glycerate as a precursor to prepare sea urchin-like NiCo-LDH hollow spheres anchored on a 3D graphene aerogel. The unique morphology of these hollow microspheres significantly expand the specific surface area and exposes more active sites, while reducing the volume changes of materials during long-term charging and discharging processes. The 3D graphene aerogel serves as a conductive skeleton, improving the material's electrical conductivity and buffering high current. The sea urchin-like NiCo-LDH hollow spheres anchored on 3D graphene aerogel (H-NiCo-LDH@GA) has a specific surface area of 51 m2 g-1 and the ID/IG value is 1.02. The H-NiCo-LDH@GA demonstrate a significant specific capacitance of 236.8 mAh g-1 at 1 A g-1, with a remarkable capacity retention rate of 63.1 % even at 20 A g-1. Even after 8000 cycles at 10 A g-1, the capacity retention still remains at 96.3 %, presenting excellent cycling stability.

???displayArticle.pubmedLink??? 38888714
???displayArticle.link??? ChemSusChem
???displayArticle.grants??? [+]